home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Ham Radio 2000 #2
/
Ham Radio 2000 - Volume 2.iso
/
HAMV2
/
MISC
/
COIL200
/
MATHL.C
< prev
next >
Wrap
C/C++ Source or Header
|
1996-04-16
|
7KB
|
369 lines
#include <stdlib.h>
#include <stdio.h>
extern double MACHEP, MAXNUM;
/* Factorials of integers from 0 through 33 */
double fac[] = {
1.0,
1.0,
2.0,
6.0,
2.4E1,
1.2E2,
7.2E2,
5.04E3,
4.032E4,
3.6288E5,
3.6288E6,
3.99168E7,
4.790016E8,
6.2270208E9,
8.71782912E10,
1.307674368E12,
2.0922789888E13,
3.55687428096E14,
6.402373705728E15,
1.21645100408832E17,
2.43290200817664E18,
5.109094217170944E19,
1.12400072777760768E21,
2.585201673888497664E22,
6.2044840173323943936E23,
1.5511210043330985984E25,
4.03291461126605635584E26,
1.0888869450418352160768E28,
3.04888344611713860501504E29,
8.841761993739701954543616E30,
2.6525285981219105863630848E32,
8.22283865417792281772556288E33,
2.6313083693369353016721801216E35,
8.68331761881188649551819440128E36
};
/* ellpe.c
*
* Complete elliptic integral of the second kind
*
*
*
* SYNOPSIS:
*
* double m1, y, ellpe();
*
* y = ellpe( m1 );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
* pi/2
* -
* | | 2
* E(m) = | sqrt( 1 - m sin t ) dt
* | |
* -
* 0
*
* Where m = 1 - m1, using the approximation
*
* P(x) - x log x Q(x).
*
* Though there are no singularities, the argument m1 is used
* rather than m for compatibility with ellpk().
*
* E(1) = 1; E(0) = pi/2.
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0, 1 13000 3.1e-17 9.4e-18
* IEEE 0, 1 10000 2.1e-16 7.3e-17
*
*
* ERROR MESSAGES:
*
* message condition value returned
* ellpe domain x<0, x>1 0.0
*
*/
/*
Cephes Math Library, Release 2.1: February, 1989
Copyright 1984, 1987, 1989 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
static double PE[] = {
1.53552577301013293365E-4,
2.50888492163602060990E-3,
8.68786816565889628429E-3,
1.07350949056076193403E-2,
7.77395492516787092951E-3,
7.58395289413514708519E-3,
1.15688436810574127319E-2,
2.18317996015557253103E-2,
5.68051945617860553470E-2,
4.43147180560990850618E-1,
1.00000000000000000299E0
};
static double QE[] = {
3.27954898576485872656E-5,
1.00962792679356715133E-3,
6.50609489976927491433E-3,
1.68862163993311317300E-2,
2.61769742454493659583E-2,
3.34833904888224918614E-2,
4.27180926518931511717E-2,
5.85936634471101055642E-2,
9.37499997197644278445E-2,
2.49999999999888314361E-1
};
double ellpe(x)
double x;
{
double polevl(), log();
if( (x <= 0.0) || (x > 1.0) )
{
if( x == 0.0 )
return( 1.0 );
printf( "ellpe domain error\n" );
return( 0.0 );
}
return( polevl(x,PE,10) - log(x) * (x * polevl(x,QE,9)) );
}
/* ellpk.c
*
* Complete elliptic integral of the first kind
*
*
*
* SYNOPSIS:
*
* double m1, y, ellpk();
*
* y = ellpk( m1 );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*
* pi/2
* -
* | |
* | dt
* K(m) = | ------------------
* | 2
* | | sqrt( 1 - m sin t )
* -
* 0
*
* where m = 1 - m1, using the approximation
*
* P(x) - log x Q(x).
*
* The argument m1 is used rather than m so that the logarithmic
* singularity at m = 1 will be shifted to the origin; this
* preserves maximum accuracy.
*
* K(0) = pi/2.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,1 16000 3.5e-17 1.1e-17
* IEEE 0,1 30000 2.5e-16 6.8e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* ellpk domain x<0, x>1 0.0
*
*/
/*
Cephes Math Library, Release 2.0: April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
static double PK[] =
{
1.37982864606273237150E-4,
2.28025724005875567385E-3,
7.97404013220415179367E-3,
9.85821379021226008714E-3,
6.87489687449949877925E-3,
6.18901033637687613229E-3,
8.79078273952743772254E-3,
1.49380448916805252718E-2,
3.08851465246711995998E-2,
9.65735902811690126535E-2,
1.38629436111989062502E0
};
static double QK[] =
{
2.94078955048598507511E-5,
9.14184723865917226571E-4,
5.94058303753167793257E-3,
1.54850516649762399335E-2,
2.39089602715924892727E-2,
3.01204715227604046988E-2,
3.73774314173823228969E-2,
4.88280347570998239232E-2,
7.03124996963957469739E-2,
1.24999999999870820058E-1,
4.99999999999999999821E-1
};
static double C1 = 1.3862943611198906188E0; /* log(4) */
double ellpk(x)
double x;
{
double polevl(), log();
if( (x < 0.0) || (x > 1.0) )
{
printf( "ellpk domain error\n" );
return( 0.0 );
}
if( x > MACHEP )
{
return( polevl(x,PK,10) - log(x) * polevl(x,QK,10) );
}
else
{
if( x == 0.0 )
{
printf( "ellpk singularity\n" );
return( MAXNUM );
}
else
{
return( C1 - 0.5 * log(x) );
}
}
}
/* polevl.c
* p1evl.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* double x, y, coef[N+1], polevl[];
*
* y = polevl( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evl() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevl().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
/*
Cephes Math Library Release 2.1: December, 1988
Copyright 1984, 1987, 1988 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
double polevl( x, coef, N )
double x;
double coef[];
int N;
{
double ans;
int i;
double *p;
p = coef;
ans = *p++;
i = N;
do
ans = ans * x + *p++;
while( --i );
return( ans );
}
/* p1evl() */
/* N
* Evaluate polynomial when coefficient of x is 1.0.
* Otherwise same as polevl.
*/
double p1evl( x, coef, N )
double x;
double coef[];
int N;
{
double ans;
double *p;
int i;
p = coef;
ans = x + *p++;
i = N-1;
do
ans = ans * x + *p++;
while( --i );
return( ans );
}